
Finite-width plasmonic waveguides with 
hyperbolic multilayer cladding 

Viktoriia E. Babicheva,1,2 Mikhail Y. Shalaginov,1 Satoshi Ishii,1,3 Alexandra 
Boltasseva,1,4 and Alexander V. Kildishev1,* 

1School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, 1205 West 
State Street, West Lafayette, Indiana 47907-2057, USA 

2ITMO University, Kronverkskiy, 49, St. Petersburg 197101, Russia 
3International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 

Tsukuba, Ibaraki 305-0044, Japan 
4DTU Fotonik – Department of Photonics Engineering, Technical University of Denmark, Oersteds Plads 343, Kgs. 

Lyngby 2800, Denmark 
*kildishev@purdue.edu 

Abstract: Engineering plasmonic metamaterials with anisotropic optical 
dispersion enables us to tailor the properties of metamaterial-based 
waveguides. We investigate plasmonic waveguides with dielectric cores and 
multilayer metal-dielectric claddings with hyperbolic dispersion. Without 
using any homogenization, we calculate the resonant eigenmodes of the 
finite-width cladding layers, and find agreement with the resonant features 
in the dispersion of the cladded waveguides. We show that at the resonant 
widths, the propagating modes of the waveguides are coupled to the 
cladding eigenmodes and hence, are strongly absorbed. By avoiding the 
resonant widths in the design of the actual waveguides, the strong 
absorption can be eliminated. 
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1. Introduction 

Metal-dielectric interfaces can support highly confined surface waves known as surface 
plasmon polaritons (SPPs). SPPs allow one to overcome the diffraction limit, manipulate light 
at the nanoscale, and merge nanoscale electronics with ultra-fast photonics [1–6]. The 
capabilities and functionalities of nanophotonic devices can be further improved by utilizing 
artificially engineered metamaterials with hyperbolic dispersion (so called hyperbolic 
metamaterials, HMMs) [7–10]. Such materials enable a variety of interesting effects and 
applications, for example negative refraction [11,12], sub-wavelength imaging [13,14], 
modified spontaneous emission rate and Purcell effect [15–22], self-induced torque [23], 
thermal emission engineering [24], complete loss compensation with realistic gain materials 
[25], improved modulation capabilities [26], volume plasmon polaritons [27–29], as well as 
designing hyper-crystals [30], tailoring bandgaps [31], vanishing photonic density of states, 
and isolated nontrivial Dirac cones [32]. 

Aiming at achieving the highest mode localization and the lowest propagation losses, 
different waveguide designs were analyzed. One possible approach is to use a hyperbolic 
material as a guiding medium [33–36]. However, propagation losses in such HMM-
waveguides are high [33]. Another approach is to sandwich a dielectric core between 
claddings with hyperbolic dispersion, forming an HMM-Insulator-HMM (HIH) structure [37]. 
Here, the term “insulator” is used for convenience and has the same meaning as “dielectric”. 
Previously, it was shown that such designs provide advantages in comparison to conventional 
plasmonic waveguides [37]. 

Recently, there was a suggestion to utilize total internal reflection in anisotropic dielectric 
structures similar to HIH waveguides [38]. While it has been predicted that confinement 
beyond the diffraction limit in respect to free space wavelength could be achieved, decrease in 
penetration depth is restricted by the refractive index of constituent dielectric materials. 
Typical high-index materials, such as silicon and germanium, could only offer a relatively 
moderate confinement increase factors, namely up to four times at 1.55 μm [38,39]. In 
contrast, using metals opens up a possibility to confine mode much stronger, in particular, 
penetration depth can be 10-30 times less than the free space wavelength [37]. 

In the present work, we investigate the properties of HIH waveguides of finite width with 
only a few periods of binary metamaterial cells in the claddings [Fig. 1]. First, we analyze 
various HIH waveguides and show their advantages in comparison to metal-insulator-metal 
(MIM) and insulator-metal-insulator (IMI) waveguides. Further, we explore the limitations of 
the effective medium theory (EMT) by explicitly calculating the properties of metal-dielectric 
lamellar claddings of the HIH-structure, and find out the optimum number of the layers 
(Section 2). These one-dimensional studies are followed by the analysis of more realistic 
finite-width HIH waveguides and a detailed examination of the feature which emerge in 
dispersion properties of the structure (Section 3). Finally, we discuss our results and present 
an outlook in Section 4. 
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Fig. 1. Schematic views of the three geometries: (a) single HIH waveguide (geometry A), εm 
and εd are the permittivities of metal and dielectric, respectively, εc stands for the permittivity 
of the waveguide core (b) periodic arrangement of HIH waveguides (geometry B); (c) 
waveguide with semi-infinite anisotropic effective medium claddings (εx, εy) that correspond to 
the lamellar structure (geometry C); (d) finite-width HIH waveguide. 

2. Propagation length and mode confinement in the HIH waveguide 

The HIH waveguides considered in the present work consist of planar metal/dielectric 
lamellar claddings and a dielectric core. Throughout the paper, we assume the metal is silver 
(permittivity is taken from [40], where the experimental data [41] fitted by the Drude-Lorentz 
model with five Lorentz oscillators) and the dielectric, including the core and the substrate, is 
silica (permittivity from [40]). 

We perform calculations for the three geometries presented in Fig. 1(a)-1(c). In geometry 
A, the core is symmetrically cladded by metal-dielectric lamellar structure. The number of 
layers is finite (we consider up to ten) and the bottom and top lamellar structures are bounded 
by the silica substrate and air respectively. In geometry B, the core and the cladding lamellar 
structures are the same as in geometry A, but the lamellar-core-lamellar structure is periodic 
in the y axis. In geometry C, the core is cladded by semi-infinite homogenous hyperbolic 

media with effective permittivities (1 )x z m dr rε ε ε ε= = + −  and ( ) 11 1(1 ) .y m dr rε ε ε
−− −= + −  

The dispersion relation for the geometry C was derived in the previous work [37]. By solving 
the dispersion equation for a particular frequency ω (corresponding to a free space 
wavenumber 0 2k cπ λ ω= = ) and core thickness d, we obtain the complex propagation 

vector (kx, ky, kz) and calculate other metrics that characterize the waveguide: propagation 
constant Re[ ],zkβ =  mode index eff 0/ ,n kβ=  propagation length 1Im[2 ] ,zL k −=  

penetration depth on the one side of the cladding 1Im[2 ] ,ykδ −=  mode size 2( ),D dδ= +  and 

a figure of merit (FoM) /FoM L D=  [37,42]. More details about applying EMT and solving 
the dispersion equation can be found in [37]. 

To show the advantages of an HIH waveguide, we have performed a comparative analysis 
of the HIH characteristics to the characteristics of standard plasmonic waveguide layouts: 
MIM and IMI. In this study, one of the key parameters is the metal filling fraction r 
( / ( ),m m dr d d d= +  where dm and dd are the thicknesses of the metal and dielectric layers, 

respectively). Figure 2 shows that at a certain wavelength range and for some parameters, the 
HIH waveguide outperforms both MIM and IMI. In particular, having fixed the propagation 
length at L = 592 μm, the FoM of HIH waveguides with r = 0.2 and d = 30 nm or r = 0.16 and 
d = 50 nm is more than two times higher than the FoM of IMI waveguide with metal 
thickness d = 70 nm [Fig. 2(a)]. Furthermore, at λt = 1.55 μm, the FoM of HIH waveguides 
with r = 0.15 is 2.5 times higher than the FoM of MIM waveguides with an identical core 
thicknesses [Fig. 2(b)]. Thus, HIH structure can provide either better confinement or 
propagation length in comparison to MIM and IMI designs. Similar to IMI designs, HIH 
waveguides suffer from large mode sizes for small filling fractions, i.e., r < 0.3. In further 
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calculations, we use r = 0.5 as it provides better performance than MIM designs. From a 
practical point of view, extremely thin metal layers can lose their uniformity and will not give 
such high performance as predicted theoretically using bulk metal permittivity [43,44]. 

 

Fig. 2. (a) HIH waveguide FoM for various filling fractions of metal r 

( m m d/ ( )r d d d= + =  = 0.2 and 0.16) and d in comparison to FoM of IMI waveguide. (b) 

HIH waveguide FoM for various r in comparison to FoM of MIM waveguide, in all cases d = 
50 nm. HMM is considered as an effective medium (geometry C in Fig. 1). 

Let us consider an HIH waveguide with a finite number of layers in its hyperbolic 
cladding. The calculation procedure to derive dispersion relations for geometries A and B 
based on the T-matrix approach were presented in [45]. Geometries A and B are compared 
with C in terms of the effective indexes and the propagation lengths [Fig. 3]. The 
dependencies of both the effective indexes and propagation lengths vs. wavelength for the 
considered geometries are very similar. The curves for the geometries A and B are overlapped 
which essentially means that ten periods is enough for separating single HIH structures such 
that modes inside different HIH units do not interact with each other. Additionally, they only 
slightly differ from the geometry C, which validates the use of the EMT method for such 
calculations. 

 

Fig. 3. Dependencies of (a) propagation length and (b) effective index vs. wavelength for the 
considered waveguide geometries A, B and C, which are shown in Fig. 1. The layer 
thicknesses are 10 nm each, the core thickness is d = 200 nm, and the number of periods in the 
cladding for the geometries A and B is ten. 

For a practical realization of the HIH waveguide, it is better to have a minimum possible 
number of layers in the multilayer cladding. In order to study how the decrease in number of 
periods affects the waveguide properties, we analyze geometry A [in Fig. 1(a)] and plot the 
propagation lengths and the effective indexes for the cases of one, two, five, and ten periods 
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[Fig. 4]. We also compare the obtained results with the case of semi-infinite EMT cladding 
(geometry C in Fig. 1). For a cladding consisting of a single pair, the propagation length is 
two times lower than the EMT-approximated cladding and the index differs by about 3%. 
Figure 4 demonstrates that an increase in the number of layers results in a better agreement to 
the ones obtained using the EMT approximation. In particular, ten pairs are enough to mimic 
EMT well and to consider the cladding as a hyperbolic medium. Thus, a cladding composed 
of ten periods of lamellar layers is used for further calculations. One can mention that five 
layers give close results. By doubling the number of layers accuracy is increased 
insignificantly, and thus, for the simplified fabrication, one can use five layers as well. 

 

Fig. 4. Comparison of propagation length (a) and effective index (b) dependences vs. 
wavelength for the geometry A with different number of periods (one, two, five, and ten), as 
well as for the geometry C, EMT approximation. The other parameters are the same as in Fig. 
3. 

3. Finite-width HIH waveguide 

To explore a more realistic device layout, we analyze a finite-width waveguide [Fig. 1(d)]. 
The core is cladded with ten periods of identical lamellar structures (10/10-nm-thick 
silver/silica layers) at the top and bottom, the core thickness is fixed at d = 200 nm, and the 
HIH waveguide is surrounded by air. The eigenmodes of the waveguides with different 
widths w were found using a commercial finite-element based eigenmode solver (CST 
Microwave Studio® 2013 [46]). The wavelength is fixed at λt = 1.55 μm. Although the 
waveguides support a variety of modes with different field distributions (e.g. symmetry, 
core/cladding intensity distribution ratio, etc.), we focus our study on the modes that are 
mostly localized inside the core and have a symmetric profile in both x- and y-directions. A 
representative field distribution for a waveguide with a width of w = 1.25 μm is shown in Fig. 
5(a). Numerical simulations can also generate more complicated field profiles inside the core, 
but we do not study these modes as their excitation in actual devices is difficult. 

Furthermore, we vary w and analyze propagation length L and propagation constant β of 
the mode [Fig. 6]. At a particular w, the propagation length is significantly decreased [see Fig. 
6(a)]. Some of these dips are accompanied by pronounced resonance profiles of β [see Fig. 
6(b)]. At non-resonant w, values of β are lower than those for the one-dimensional (or infinite-
width) waveguides [see increase of β at larger width in Fig. 6(b)]. This can be explained by a 
non-uniform field distribution with lower field penetration into the metal at the edges of 
waveguide [see Fig. 5(b)], which results in the lower effective index of the mode. 

#226916 - $15.00 USD Received 14 Nov 2014; revised 24 Mar 2015; accepted 25 Mar 2015; published 7 Apr 2015 
© 2015 OSA 20 Apr 2015 | Vol. 23, No. 8 | DOI:10.1364/OE.23.009681 | OPTICS EXPRESS 9686 



 

Fig. 5. Ey-component field distribution of the modes at λt = 1.55 μm for (a) w = 1.25 μm, (b) 
0.875 μm, (c) 1.775 μm, and (d) 0.59 μm. 

As shown in the previous section, the effective anisotropic permittivity 

( ), ,diag x zyε ε ε ε=  gives a reasonable material approximation for the optical response of 

actual lamellar structures. It also demonstrates that the proposed one-dimensional structures 
do not possess any photonic band gaps and the distinct dispersion features observed in Fig. 6 
appear solely because of the finite size (both vertical and horizontal) of the hyperbolic 
cladding. 

 

Fig. 6. (a) Propagation length L and (b) propagation constant β vs. waveguide width at λt = 1.55 
μm. Inset: the case when silica substrate is included (blue line). Position of the feature shifts by 
12 nm with respect to the case without substrate (red line). 

To determine the origin of the resonances, we analyze field profiles at several different w 
[Fig. 5(b)–(d)]. One can see that w = 0.875 μm corresponds to one period of an additional 
transverse mode in the cladding [see Fig. 5(b)]. Doubling the value of w to 1.775 μm 
corresponds to two periods [see Fig. 5(c)]. Cladding modes with more complicated profiles 
arise for smaller widths w < 0.6 μm [see Fig. 5(d)]. 

For a more detailed analysis, we numerically calculated the eigenmodes of lamellar 
structures that correspond to a single (top or bottom) cladding. Similar to the whole 
waveguide analysis, we varied the width of the layer and calculated β of the different modes 
[see Fig. 6(b)]. Figure 7 shows field distributions for the four chosen modes in the 1.5-μm-
wide cladding. One can see that resonances arise when the β of an odd mode in lamellar 
structure matches the β of the HIH waveguide, i.e. excitation of the odd modes affects the 
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eigenmodes of the HIH waveguide [crossing with lines “3”, “5”, “7”, “9” in Fig. 6(b)], while 
no such effect happens for the even modes (no resonance at crossing with lines “2”, “4”, “6”, 
“8”). Even cladding modes are not supported in HIH waveguides because of the requirements 
to have symmetric field distribution inside the waveguide core. No visible spikes in the 
crossing with some modes in Fig. 6(b) can be explained by low probability of excitation of the 
high order cladding modes in the HIH waveguide. 

It should be mentioned that including a substrate or other non-uniform surrounding 
complicates the identification of eigenmodes: depending on the environment, the eigenmodes 
of each cladding layer will be different. The inset in Fig. 6(a) illustrates a shift in propagation-
length dip when the silica substrate is considered. The dip has approximately the same 
magnitude and width, but it shifts by 12 nm. We anticipate that the dips at smaller waveguide 
widths will show similar changes. 

 

Fig. 7. Ey-component field distribution in the multilayer cladding consisting of ten periods, 
each layer is 10-nm-thick, w = 1.5 μm at λt = 1.55 μm. (a) Corresponds to the mode noted as 
“1”, (b) “2”, (c) “3”, and (d) “4” in Fig. 6(b). 

The dispersion relation for an HMM can be written as 

 
22 2

2
0 ,yx z

y x

kk k
k

ε ε
+

+ =  (1) 

where εx and εy are the effective medium permittivities (see Section 2). 
One can expect that resonances in the cladding correspond to the conditions 

 (2 ) 2, { , }q qk w n q x yπ≈ =  (2) 

where h = 10(dm + dd) = 200 nm is the thickness of the cladding layers and nx,y is an integer. 
In this simple model, we assume that both kx and ky are real values. One can see from Fig. 7, 
ny = 1 for all resonant patterns. Then, in Fig. 8, we plot 2xk w π  for each mode in Fig. 6(b), 

i.e., zk iβ α= + , 0 t2 ,k π λ=  and kx is obtained from Eq. (1). One can see that kxw/2π = 1, 2, 

and 3 coincide with the position of the anomalous spikes in Fig. 6(b) [red triangles in Fig. 8]. 
Since the field penetrates outside the HMM slab in the x-direction [see Fig. 7], the condition 

x xk w nπ=  is not strictly satisfied and it causes small discrepancy between anomalous 

positions and values of x xw n kπ=  for nx = 2, 4, and 6 (one can note that nx does not 

coincide with mode number). To validate assumption (2) for q y= , we introduce an 

imaginary part to ky, that is ,y y yk k ik′ ′′= +  and calculate both yk ′  and yk ′′  according to Eq. (1) 

for three modes (“3”, “5”, “7”) at the point where each of them crosses the dispersion curve of 
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HIH waveguide. Calculations show that 1.03yk hπ′ ≈  and 0.003 ,yk hπ′′ ≈  which means that 

Eq. (2) for q y=  is satisfied with a good accuracy. 

Thus, the excitation of the cladding modes with resonant transverse profiles and high field 
localization significantly increases the losses in the finite-width HIH waveguide. On the one 
hand, these waveguide widths should be avoided while designing practical low-loss HIH 
structures [2]. On the other hand, lossy plasmonic modes can appear favorable for modulation 
of propagating modes [47,48], filtering, or waveguide termination [4,49]. 

 

Fig. 8. The number of periods in transverse direction kxw/2π vs. waveguide width at λt = 1.55 
μm. Red triangles correspond to the spikes in Fig. 6(b) and well agree with the condition kxw = 
2π, 4π, and 6π for the modes 3, 5, and 7, respectively. 

4. Conclusion 

We studied the properties of HIH waveguides and showed that utilizing a multilayer structure 
with hyperbolic dispersion as a cladding can provide advantages in comparison to standard 
MIM and IMI plasmonic waveguides, of a similar geometry, in terms of propagation length 
and mode confinement. We performed the rigorous calculations of the HIH waveguides where 
multilayer lamellar claddings are treated exactly, without using the effective medium theory. 
The study showed that when the number of periods exceeds ten, the EMT results closely 
match the exact calculations, serving as a reasonable approximation. In contrast, rigorous 
calculations need to be applied for the thinner claddings. We numerically calculated 
eigenmodes of the HIH waveguide with a finite width and found resonant features for several 
width values. We showed that the resonant modes inside the cladding of the waveguide with 
finite width affect the dispersion of waveguides formed by the cladding material. Henceforth, 
the width of finite width HIH-cladded waveguides should be carefully designed with respect 
to the resonant modes inside the cladding, which greatly increase the loss of the waveguide, 
so as to achieve the desired performance. 
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